Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 892: 164679, 2023 Sep 20.
Article in English | MEDLINE | ID: covidwho-20245265

ABSTRACT

To prevent anthropogenic warming of the climate system above dangerous thresholds, governments are required by the Paris Agreement to peak global anthropogenic CO2 emissions and to reach a net zero CO2 emissions level (also known as carbon neutrality). Growing concerns are being expressed about the increasing heat stress caused by the interaction of changes in temperature and humidity in the context of global warming. Although much effort has been made to examine future changes in heat stress and associated risks, gaps remain in understanding the quantitative benefits of heat-risk avoidance from carbon-neutral policies, limited by the traditional climate projections from the Coupled Model Intercomparison Project Phase 6 (CMIP6). Here we quantify the avoided heat risk during 2040-2049 under two scenarios of global carbon neutrality by 2060 and 2050, i.e., moderate green (MODGREEN) and strong green (STRGREEN) recovery scenarios, relative to the baseline scenario (FOSSIL), based on multi-model large ensemble climate projections from a new climate model intercomparison project (CovidMIP) that endorsed by CMIP6. We show that global population exposure to extreme heat stress increases by approximately four times its current level during 2040-2049 under the FOSSIL scenario, whereas the heat exposure could be reduced by as much as 12 % and 23 % under the MODGREEN and STRGREEN scenarios, respectively. Moreover, global mean heat-related mortality risk is mitigated by 14 % (24 %) under the MODGREEN (STRGREEN) scenario during 2040-2049 relative to the FOSSIL scenario. Additionally, the aggravating heat risk could be mitigated by around a tenth by achieving carbon neutrality 10 years earlier (2050 versus 2060). In terms of spatial pattern, this heat-risk avoidance from low-carbon policies is typically greater in low-income countries. Our findings assist governments in advancing early climate change mitigation policy-making.


Subject(s)
Carbon , Heat Stress Disorders , Humans , Carbon Dioxide , Climate Change , Global Warming , Temperature
2.
PeerJ ; 10: e13838, 2022.
Article in English | MEDLINE | ID: covidwho-1975336

ABSTRACT

Background: Predictive scenarios of heatstroke over the long-term future have yet to be formulated. The purpose of the present study was to generate baseline scenarios of heat-related ambulance transportations using climate change scenario datasets in Tokyo, Japan. Methods: Data on the number of heat-related ambulance transportations in Tokyo from 2015 to 2019 were examined, and the relationship between the risk of heat-related ambulance transportations and the daily maximum wet-bulb globe temperature (WBGT) was modeled using three simple dose-response models. To quantify the risk of heatstroke, future climatological variables were then retrieved to compute the WBGT up to the year 2100 from climate change scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5) using two scenario models. The predicted risk of heat-related ambulance transportations was embedded onto the future age-specific projected population. Results: The proportion of the number of days with a WBGT above 28°C is predicted to increase every five years by 0.16% for RCP2.6, 0.31% for RCP4.5, and 0.68% for RCP8.5. In 2100, compared with 2000, the number of heat-related ambulance transportations is predicted to be more than three times greater among people aged 0-64 years and six times greater among people aged 65 years or older. The variance of the heatstroke risk becomes greater as the WBGT increases. Conclusions: The increased risk of heatstroke for the long-term future was demonstrated using a simple statistical approach. Even with the RCP2.6 scenario, with the mildest impact of global warming, the risk of heatstroke is expected to increase. The future course of heatstroke predicted by our approach acts as a baseline for future studies.

3.
Atmos Res ; 264: 105866, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1432964

ABSTRACT

The pandemic in 2020 caused an abrupt change in the emission of anthropogenic aerosols and their precursors. We estimate the associated change in the aerosol radiative forcing at the top of the atmosphere and the surface. To that end, we perform new simulations with the CMIP6 global climate model EC-Earth3. The simulations use the here newly created data for the anthropogenic aerosol optical properties and an associated effect on clouds from the simple plumes parameterization (MACv2-SP), based on revised SO2 and NH3 emission scenarios. Our results highlight the small impact of the pandemic on the global aerosol radiative forcing in 2020 compared to the CMIP6 scenario SSP2-4.5 of the order of +0.04 Wm-2, which is small compared to the natural year-to-year variability in the radiation budget. Natural variability also limits the ability to detect a meaningful regional difference in the anthropogenic aerosol radiative effects. We identify the best chances to find a significant change in radiation at the surface during cloud-free conditions for regions that were strongly polluted in the past years. The post-pandemic recovery scenarios indicate a spread in the aerosol forcing of -0.68 to -0.38 Wm-2 for 2050 relative to the pre-industrial, which translates to a difference of +0.05 to -0.25 Wm-2 compared to the 2050 baseline from SSP2-4.5. This spread falls within the present-day uncertainty in aerosol radiative forcing and the CMIP6 spread in aerosol forcing at the end of the 21st century. We release the new MACv2-SP data for studies on the climate response to the pandemic and the recovery scenarios. Our 2050 forcing estimates suggest that sustained aerosol emission reductions during the post-pandemic recovery cause a stronger climate response than in 2020, i.e., there is a delayed influence of the pandemic on climate.

4.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1124655

ABSTRACT

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

SELECTION OF CITATIONS
SEARCH DETAIL